If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-39x-10=0
a = 14; b = -39; c = -10;
Δ = b2-4ac
Δ = -392-4·14·(-10)
Δ = 2081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-\sqrt{2081}}{2*14}=\frac{39-\sqrt{2081}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+\sqrt{2081}}{2*14}=\frac{39+\sqrt{2081}}{28} $
| -4t^2-t+8=0 | | 3x+3=39x-1 | | -9p=12 | | 2(d-3)-6=4(d+2)+10 | | -5r+6=-5r-10 | | 8+x=2x-15 | | -2x+41=-10x+113 | | 12v-3(3v-6)=-2(-3v+4)+41 | | v-5÷2=-8 | | -82=6(x-8)+2 | | 5(2x+3)=3(4x-1)-2(3x-2 | | 10x+3=10x+7 | | 3/4x+5-1/2=3 | | 6x+8(1/2)x=30 | | 1.2x-18=3 | | 2x+30=-9-11x | | x/24=-29/24 | | 2x+8+x=2x+5 | | v-5/2=-8 | | -5-8(1-x=2(7x-6) | | -6x+9=-3(2x-3) | | X+(x+5)=60 | | 19=5x+x-5 | | 145-v=224 | | 1.2f+1.3=8.3-0.2f | | 3q^2-2q-4=0 | | -5(r+3)=-17 | | 3(3x+4)=12x | | -9=-9n-64 | | 1/2(x+4)=1/2x+2 | | 80=5(a-4) | | 50+8x=186 |